1,232 research outputs found

    The long-wavelength view of GG Tau A: rocks in the ring world

    No full text
    We present the first detection of GG Tau A at centimetre wavelengths, made with the Arcminute Microkelvin Imager Large Array at a frequency of 16 GHz (λ = 1.8 cm). The source is detected at >6 σrms with an integrated flux density of S16GHz = 249 ± 45 µJy. We use these new centimetre-wave data, in conjunction with additional measurements compiled from the literature, to investigate the long-wavelength tail of the dust emission from this unusual protoplanetary system. We use an MCMC-based method to determine maximum likelihood parameters for a simple parametric spectral model and consider the opacity and mass of the dust contributing to the microwave emission. We derive a dust mass of Md ~ 0.1 Msun, constrain the dimensions of the emitting region and find that the opacity index at λ > 7 mm is less than unity, implying a contribution to the dust population from grains exceeding ~4 cm in size. We suggest that this indicates coagulation within the GG Tau A system has proceeded to the point where dust grains have grown to the size of small rocks with dimensions of a few centimetres. Considering the relatively young age of the GG Tau association in combination with the low derived disc mass, we suggest that this system may provide a useful test case for rapid core accretion planet formation models

    Multiscale Analysis of the Gradient of Linear Polarisation

    Full text link
    We propose a new multiscale method to calculate the amplitude of the gradient of the linear polarisation vector using a wavelet-based formalism. We demonstrate this method using a field of the Canadian Galactic Plane Survey (CGPS) and show that the filamentary structure typically seen in gradients of linear polarisation maps depends strongly on the instrumental resolution. Our analysis reveals that different networks of filaments are present on different angular scales. The wavelet formalism allows us to calculate the power spectrum of the fluctuations seen in gradients of linear polarisation maps and to determine the scaling behaviour of this quantity. The power spectrum is found to follow a power law with gamma ~ 2.1. We identify a small drop in power between scales of 80 < l < 300 arcmin, which corresponds well to the overlap in the u-v plane between the Effelsberg 100-m telescope and the DRAO 26-m telescope data. We suggest that this drop is due to undersampling present in the 26-m telescope data. In addition, the wavelet coefficient distributions show higher skewness on smaller scales than at larger scales. The spatial distribution of the outliers in the tails of these distributions creates a coherent subset of filaments correlated across multiple scales, which trace the sharpest changes in the polarisation vector P within the field. We suggest that these structures may be associated with highly compressive shocks in the medium. The power spectrum of the field excluding these outliers shows a steeper power law with gamma ~ 2.5.Comment: 12 pages, 12 figure

    Diffuse radio emission in MACS J0025.4-1222: the effect of a major merger on bulk separation of ICM components

    Full text link
    Mergers of galaxy clusters are among the most energetic events in the Universe. These events have significant impact on the intra-cluster medium, depositing vast amounts of energy - often in the form of shocks - as well as heavily influencing the properties of the constituent galaxy population. Many clusters have been shown to host large-scale diffuse radio emission, known variously as radio haloes and relics. These sources arise as a result of electron (re-)acceleration in cluster-scale magnetic fields, although the processes by which this occurs are still poorly understood. We present new, deep radio observations of the high-redshift galaxy cluster MACS J0025.4-1222, taken with the GMRT at 325 MHz, as well as new analysis of all archival ChandraChandra X-ray observations. We aim to investigate the potential of diffuse radio emission and categorise the radio population of this cluster, which has only been covered previously by shallow radio surveys. We produce low-resolution maps of MACS J0025.4-1222 through a combination of uv-tapering and subtracting the compact source population. Radial surface brightness and mass profiles are derived from the ChandraChandra data. We also derive a 2D map of the ICM temperature. For the first time, two sources of diffuse radio emission are detected in MACS J0025.4-1222, on linear scales of several hundred kpc. Given the redshift of the cluster and the assumed cosmology, these sources appear to be consistent with established trends in power scaling relations for radio relics. The X-ray temperature map presents evidence of an asymmetric temperature profile and tentative identification of a temperature jump associated with one relic. We classify the pair of diffuse radio sources in this cluster as a pair of radio relics, given their consistency with scaling relations, location toward the cluster outskirts, and the available X-ray data.Comment: 20 pages, 15 figures, accepted for publication in A&

    Early Science with the Karoo Array Telescope: a Mini-Halo Candidate in Galaxy Cluster Abell 3667

    Full text link
    Abell 3667 is among the most well-studied galaxy clusters in the Southern Hemisphere. It is known to host two giant radio relics and a head-tail radio galaxy as the brightest cluster galaxy. Recent work has suggested the additional presence of a bridge of diffuse synchrotron emission connecting the North-Western radio relic with the cluster centre. In this work, we present full-polarization observations of Abell 3667 conducted with the Karoo Array Telescope at 1.33 and 1.82 GHz. Our results show both radio relics as well as the brightest cluster galaxy. We use ancillary higher-resolution data to subtract the emission from this galaxy, revealing a localised excess, which we tentatively identify as a radio mini-halo. This mini-halo candidate has an integrated flux density of 67.2±4.967.2\pm4.9 mJy beam1^{-1} at 1.37 GHz, corresponding to a radio power of P1.4GHz=4.28±0.31×1023_{\rm{1.4\,GHz}}=4.28\pm0.31\times10^{23} W Hz1^{-1}, consistent with established trends in mini-halo power scaling.Comment: 17 pages, 10 figures, accepted MNRA

    An upper limit on the strength of the extragalactic magnetic field from ultra-high-energy cosmic-ray anisotropy

    Full text link
    If ultra-high-energy cosmic rays originate from extragalactic sources, the offsets of their arrival directions from these sources imply an upper limit on the strength of the extragalactic magnetic field. The Pierre Auger Collaboration has recently reported that anisotropy in the arrival directions of cosmic rays is correlated with several types of extragalactic objects. If these cosmic rays originate from these objects, they imply a limit on the extragalactic magnetic field strength of B < 0.7-2.2 x 10^-9 (lambda_B / 1 Mpc)^-1/2 G for coherence lengths lambda_B < 100 Mpc and B < 0.7-2.2 x 10^-10 G at larger scales. This is comparable to existing upper limits at lambda_B = 1 Mpc, and improves on them by a factor 4-12 at larger scales. The principal source of uncertainty in our results is the unknown cosmic-ray composition.Comment: 9 pages, 3 figures, accepted by Ap

    Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA

    Get PDF
    We investigate the possibility for the SKA to detect and study the magnetic fields in galaxy clusters and in the less dense environments surrounding them using Faraday Rotation Measures. To this end, we produce 3-dimensional magnetic field models for galaxy clusters of different masses and in different stages of their evolution, and derive mock rotation measure observations of background radiogalaxies. According to our results, already in phase I, we will be able to infer the magnetic field properties in galaxy clusters as a function of the cluster mass, down to 101310^{13} solar-masses. Moreover, using cosmological simulations to model the gas density, we have computed the expected rotation measure through shock-fronts that occur in the intra-cluster medium during cluster mergers. The enhancement in the rotation measure due to the density jump will permit to constraint the magnetic field strength and structure after the shock passage. SKA observations of polarised sources located behind galaxy clusters will answer several questions about the magnetic field strength and structure in galaxy clusters, and its evolution with cosmic time.Comment: 9 pages, 4 Figures, to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14

    Investigating the source of Planck-detected AME: high resolution observations at 15 GHz

    Get PDF
    The Planck 28.5 GHz maps were searched for potential Anomalous Microwave Emission (AME) regions on the scale of 3\sim3^{\circ} or smaller, and several new regions of interest were selected. Ancillary data at both lower and higher frequencies were used to construct spectral energy distributions (SEDs), which seem to confirm an excess consistent with spinning dust models. Here we present higher resolution observations of two of these new regions with the Arcminute Microkelvin Imager Small Array (AMI SA) between 14 and 18 GHz to test for the presence of a compact (\sim10 arcmin or smaller) component. For AME-G107.1+5.2, dominated by the {\sc Hii} region S140, we find evidence for the characteristic rising spectrum associated with the either the spinning dust mechanism for AME or an ultra/hyper-compact \textsc{Hii} region across the AMI frequency band, however for AME-G173.6+2.8 we find no evidence for AME on scales of 210\sim 2-10 arcmin.Comment: 13 pages, 8 figures, 4 tables. Submitted to Advances in Astronomy AME Special Issu

    Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau

    Full text link
    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from AGN. We present data at 325 and 610 MHz taken with the GMRT of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass YSO at at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength (0.11 mG) and particle energy (4x10^40 erg), which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.Comment: 19 pages, 2 figures, accepted for publication in ApJ Letter
    corecore